Focus Applied Technologies "EZ Dyno" Manual

REV 6

EZ pull Dynamometer program is designed to be a simple interface for dynamometer testing and tuning of all types of vehicles. It works with our Motorcycle, Automotive and Heavy Duty Vehicle chassis dynamometers, allowing various ways to control the load, as well as collecting and displaying data from the dyno and vehicle.

An on-line tutorial covering this software is available at "ezDyno Monitor Tutorial": https://www.youtube.com/watch?v=iylz2doeOK8

TUNING:

When tuning, you can use Manual, Speed or Road modes to load the vehicle. Just click on the type of loading you need, and adjust the corresponding parameters.

In **MANUAL** mode enter the % load, or click the +/- to increase/decrease loading In **SPEED** mode enter the target speed (either DYNO or ENGINE)

In **ROAD** mode the dyno increases load with speed, mimicking the vehicles road performance. If the road load calibrations are set correctly, normally you would use 100% Road Load. To simulate a lighter load, use 80%, or more than 100% for heavy loads (eg. 120%). Road Load is often used for testing gear changes, and time to a given speed during acceleration.

In MANUAL mode you can quickly increase/decrease the load by hitting the **+/-** buttons, or zero the load by hitting the **"0**" button.

Dyno pulls are "Wide Open Throttle" acceleration tests used to measure power, torque and usually the Air/Fuel Ratio of your engine during hard acceleration. The pull should last for 10 to 20 seconds to get best results. This can be done with no load (an inertia only pull), 2-point loading (has a start rpm and load and stop rpm and load), or acceleration loading (uses start rpm and load, then adjusts load to achieve constant acceleration).

SETTING UP CONTROLLER TO PERFORM PULLS:

"Tare" load cell reading (or double click on the TARE button to automatically TARE)
Select Gear, and spin up roller
Click **"RATIO"** and set gear ratio (if using Calculated Engine RPM)
Return engine to idle
Click **ENGINE/DYNO** button to select RPM reference
Set desired **START** and **STOP** RPMs
Set Start and Stop **LOADS** to just hold engine at ~80% throttle
Set target Acceleration (STOP rpm – START rpm) / 15
Click on "Acceleration" Pull Loading

PERFORMING PULLS:

Select Vehicle ID (license plate number or other) and File Destination

Slowly open throttle to wide open at the start speed

"Instantaneous" graph will automatically show up if the Instant Pull Graph box is ticked

Hold throttle Wide Open following instructions in the notification window

When at redline, or instructed to close throttle, reduce throttle

To view results and compare/print click on the GRAF button

There are several AUTOMATIC options used when performing pulls:

LOAD: This will increase or decrease the load as required to maintain a reasonable pull duration SAVE: When this is ON the file will automatically be saved with the given vehicle ID and run number GRAF: When this is ON the large graf will automatically be opened at the end of the pull. INSTAGRAF: When this is on an "instantaneous" graf will show up during pulls/.

These options are turned on/off by clicking the button. They are ON when the button is GREEN.

GRAF: Graphic Results Display

To view the large "Pull" graf, click on the GRAF button.

Click on file name buttons to load existing files, and select X and Y axis parameters from the **SETUP** menu.

Saving the Data

You can save the graf the JPG button (prints it to a file), **REPORT** (sends it to an Excell spread sheet) or the **PRINT** button (prints to a printer).

Graf setup parameters (what data to plot, 1 or 2 graphs, grid size and etc) can be accessed by hitting the **SETUP** button.

CALIBRATIONS

To properly calculate the vehicles power the calibrations must be set to the correct values. Most problems with power calculations are related to incorrect calibration values. The dynamometer Roller Diameter and Inertia are the most critical. Next is the Friction, however if the inertia is properly set, the friction can be automatically calibrated. You can also set up the calibration for practically any sensor connected to the Analog Inputs, and many other parameters of interest.

Dynamometer Calibrations can be accessed by hitting the **Calibration** button.

NOTE: Friction can be calibrated only once the Inertia is correctly set.

To calibrate friction:

Tare the load cell

Spin up the dyno to a high speed (typical speed encountered during testing) Click on the AUTO friction button (and OK on the confirmation box) Clutch the vehicle (or place in neutral) and allow the roller/wheel so spin freely to a stop The new friction parameters will be presented in a confirmation box.

Max Torque: 250Nm

TYPICAL CALIBRATION NUMBERS Quad: 0 Nm/rpm² FRICTION Offset: 4Nm Factor: 0.002 Nm/rpm Dyno Inertia: 1.3 Max RPM: 8000 Roller Diameter: 0.165m Gear Ratio: 3 (varies depending on what gear used on vehicle) Engine Inertia: 0 Dynamometer and Vehicle Calibration Title Mccd-100 with Inertia Dynamometer Calibrations (critical for proper power calculation) 0.1 Dyno Type MCCD-100i Roller Diam (m) Dynamometer Inertia (kg m²) 1.9

Each "Channel" has a label, units and linear calibrations (offset and factor). For scaling purposes there is a minimum and maximum value that can be changed, and a filter value for smoothing out the fluctuations. Filter value of 0 gives no filtering, 0.5 is slight filtering, and 0.9 is heavy filtering. Major and Minor number of ticks on the dial gages can be set, and the number of digits to be displayed (for example F2 or N2 for 2 digits to the right of the decimal point).

Common Analog Channel Calibrations

DEVICE NAME	<u>UNITS</u>	OFFSET	<u>FACTOR</u> (U/V)
INNOVATE Motorsport AFR Meter	AFR	7.35	3.01
AEM AFR	AFR	7.3125	2.375
Focus Thermistor	°C	-27.6	135 (approximate)

To change the controllers internal calibrations, you can click the **Controller Cals** button.

PPR are the "pulses per rev" of the dyno, or RPM2

Torque Averaging of 50% is normal. Use ~80 for greater averaging of displayed number (on controller) Torque Decimal places can be set (0, 1, 2, 3 or 4)

PPR1	44	PPR2	11	1) Mount Calibration Arm and	2) Place Calibration Weight, En	ter Torque, click "SET"					
RPM1 Max	5000	RPM1 Alarm	5000	TARE (Zero Torque Reading)	EXAMPLE Forg = 0.51m x 20kg x 1.5 x 9.81m/s ²	Radius					
Torque Avg	50	Torq Cal	5000	Arm	= 150 Nm						
Torque Alarm	10000	Torq Decimal	3			Cal Weight					
	Speed	Control Mode Paramete	ns	Load							
Кр	204	Fp	150	Dynamometer Cell	Torritor	P					
Ki	5	Fi	400	Torq = Radius x Weigh	nt x Gear Ratio x 9.81						
Kđ	20	Fd	10	(Nm) (meters) (kg)	(Dyno/Input) (m/s²)	D					
Ko	Torque	Control Mode Paramet	ers	Gear Ratio: Dyno Speed / Input Shaft Speed (normally 1 for Engine Dynos)	Input Shaft	EXAMPLE Dyno spins 1.5 x faster so					
κµ Ki	5	Fi	1000	For Chassis Dynos with Belts: Gear Ratio = Dyno Speed / Roller Speed	(Roller)	Gear Ratio = 1.5					
Kd	0	Fd	100								
BoadLoadN	Ande Parameters	Torque	Calibration	3) Remove Cal Weight and repeat step 1	to check calibration						
Kfrict	100	TARE -0.1	Nm (Read)	Max Signal Voltage	\sim	\uparrow					
Kareo	7000	SET	Nm (Target)		Speed	1 to 2V					
Kmass	25	Put on Cal Arm, T weights, Enter tar	ARE, Load Cal get Nm and hit SET		Signal						
			d heload to check.	Upper Trigger		1					
Speed Si	gnal Upper/Lov	wer Trigger Voltage	Levels (DC5.5)	Lower Trigger		0.1 to 0.5V					
Upper 0.	.39 } 0	0.39			- 0.5V						
Lower U.	.00 • 1	0.00	J	Min Signal Voltage							
After editing To keep ther	calibrations you ca m permanently you	an SEND them to the co must BURN them to fla	ntroller. sh in the controller.	Speed Trigger Levels should b	e set within the sensors output	t voltage.					
	I: Incorrect cals ca	an cause controller to be	have unexpectedly. دينه	Leave margin, especially betwo	een the Upper Threshold and	the Max voltage.					
JEND		bam		Set levels and confirm speed r	eading at high and low speed	s before burning.					
PID Tun	ning:		Set Ki,	Kd to zreo							
TYPICAL	NUMBER	S	Adjust	Kp for good convergend	ce, with ~50% oversh	oot					
Kp: 100	Fp: 200		Increa	se KD for <10% oversho	ot.						
Ki: 2	Fi: 400		lf Kp. I	or d is > 200 . then doub	le the F parameter.	and halve the K parameter					
Kd: 200 Ed:10 (eg Ki			(eg Kr	n= 220 En=1000 change	to Kn=110 En=500)						
10.200	10.10		(08.14	, 220, 19 1000 change	to the 110,16 500,						
Road Lo	oad Tuni	ing:	From	the main screen set the	Road Load % to 100						
TYPICAL	NUMBER	S	Set Ka	reo to 20000 and Kmass	to 0						
Kf [.] 10 Adjust				t Kfrict to get the correct low-speed throttle (20kph) on dyno							
Ka: 14000 Adjust				t Kareo to get correct high speed throttle (100 kph) on dyno							
Km· 0	-		Δdiust	ust Km to get the correct acceleration time (20 to 80 knh)							
Kiii. 0			najast								
Torquo	Calibrat	lion	Diaco	Calibration Arm on							
loique	Calibrat			be reading							
			Place	weights on the cal arm							
			Enter	the appropriate Target T	orque and hit SET						
			Remo	ve weights and re-tare to	o check						
Speed Signal Trigger Levels: Norma				ally this will by 0.5 for the lower level and 1.0 for the upper level							
			Upper	and Lower levels can be	e adjusted to give be	st RPM stability					
			lf a tri	gger level is too high or l	ow, the RPM will be	0 even with a signal					
			Spin tl	ne rollers or run the engi	ine with speed clam	to view RPM numbers					
			1	0	1 <i>2</i> r						

SEND the parameters to the controller to test out.

BURN them to the controller when you are happy with the results.

ENGINE TUNING WITH THE "TUNE BUDDY" SCREEN:

To get the "Tune Buddy" tuning assist screen, click the TUNE button on the main screen. You will then have a second window open that has 3 grids, each with the same coordinates, usually X = Engine RPM, Y = Throttle (or MAP) and Z (the displayed item) is Air/Fuel ratio:

10	une Buddy																
ł	Configure	RI	PM 2,880				Tuning Assist Screen										
		Target Measured Correction %															
r	Load			1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000		
	28		5	0.40	0.14	0.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
	Set Target To: 12.5	-	10	0.00	0.00	0.41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
			15	0.00	0.00	0.39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
i.	And Easter 1	- 1	20	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
;	Acc. Factor	-11	25	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Target	12.50
	Correction: AFR or % Fuel:		30	0.00	0.00	0.28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
1	I % Fuel		35	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Current	5.00
	Zero Corrections		40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Correction	0.28
ŧ.	Export Map	1	45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		,
i.	Import Map	1	50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Abort	Close

TARGET: This is the target AFR. It can be set by entering a number in the upper left box and hitting "Set Target To" button. If you want different target values in different cells, you can Export, edit and then Import the map.

MEASURED: This is the actual measured average AFR for each cell. The averaging exponent is labeled as the Acc. Factor (accumulation factor)

Correction %: This is the relative change required in the fueling map of the engines ECU (Electronic Control Unit)

As you change the operating condition the light blue highlighting indicates what cell you are operating in. You can observe the Measured and Correction values change while you run.

The Current cell value, Target value and Correction value for the current cell are displayed on the right side. Corrections can be reset by hitting the "Zero Corrections" button.

You can edit the Tune display configuration with the Configure button:

😽 Tuneing Configuration 📃 🔲						
	Overall Title					
Tuning Assist Scree	n					
X-Axis Title RPM	Y-Axis Title Load	Z-Axis Title AFR				
Source	Source	Source				
RPM1	C Throttle					
C RPM2	• Load					
C Analog 1	C Analog 1	C Analog 1				
C Analog 2	C Analog 2	C Analog 2				
C Analog 3	C Analog 3	Analog 3				
C Analog 4	C Analog 4	C Analog 4				
X-Bins 12	X-Bin Step 10	00				
Y-Bins 10	Y-Bin Step 5					
	Abort	Close				

You can select the variable for the X axis, Y axis and Z, as well as the number of bins in the X and Y directions, and their step size. These parameters are saved in the Tune Configuration file.

REMOTE

A remote is available which has 3 to 5 buttons. This is connected to any one of the Analog inputs. The Remote functions need to be turned ON via the Calibrations Remote section:

Remote Control Settings:

Remote on Analog Channel: 3

Remote lets you push a button to: Enable/Dissable Load Enable/Dissable Break, and Save and Close Graf

The first button puts the dyno in BREAKING mode, applying a load specified in the Breaking section of the Calibrations. BREAKING mode can be toggled ON/OFF with this button.

The second button is the LOAD button. The Load can be toggled ON/OFF using this button.

The Third button is the CONTINUE button. This is used to SAVE files when the Save file dialog box is open, or to EXIT the Graf when it is open. This allows you to continue testing without having to click the mouse.

For more information contact: www.FocusAppliedTechnologies.com